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NOMENCLATURE

semimajor axis, trajectory conic
semi-transversal axis, constraining hyperbola
semi-conjugate axis, constraining hyperbola
center-to-focus distance, constraining hyperbola

coefficient of the octic equation in Vorx (n =0 to 8)

perpendicular distance, defined in Fig. 2
eccentricity, constraining hyperbola

total velocity impulse = fl + f2
velocity impulse at terminal i = IAGiI (i =1,2)

angular momentum per unit orbiting mass
orbital energy per unit orbiting mass
terminal parameter, defined by Eq. (10)
distance between two terminal points

orthogonal projection of a terminal velocity vector on
the VRi and VC axes (see Fig. 3)

i 0
m /T, wg /R
i i
terminal distance ratio = r2/rl

terminal distance ratio, satisfying the coincidence
condition, Eq. 15

terminal parameter, defined by Eqg. (9)
coefficient of the octic equation in Vepsx (n =0 to 8)

radial distance
semilatus rectum

position vector



<

<¥

center—-to-vertex distance, evolute Lamé, defined
in Fig. C-1

time

speed

velocity

<

velocity-increment vector at terminal i, = lGi - Oll
an unspecified trajectory parameter

direction angle of A%i with reference to the normal
of transfer plane, defined in Fig. 2

direction angle of AGi with reference to local
radial direction, defined in Fig. 2

direction angle of A%i with reference to local

transversal direction, defined in Fig. 2

numerical eccentricity, trajectory conic

eccentricity vector, trajectory conic
true anomaly
gravitational strength of the Newtonian field

nondimensional speed = V//%

included angle between gC and gri (see Fig. C-1)

included angle between éd and &, (see Fig. C-1)

v
path angle, relative to local horizon
base angle, defined in Fig. 1

central angle, or angle of separation of two
terminal position vectors, defined in Fig. 1



Subscripts

0 terminal orbit
3 1, 2 terminal points
% i,3 terminal index
* stationary l-impulse solution
* % minimal 2-impulse solution
*5 stationary l-impulse (at terminal j) solution
i*5 guantity evaluated at terminal i, pertaining to

stationary l-impulse (at terminal j) solution

i** quantity evaluated at terminal i, pertaining to
minimal 2-impulse solution

L, H low and high trajectories of a bounding pair

C, R chordal and radial directions

r, o radial and transversal directions

P, N inplane and out—-of-plane components

Xr T directions along the interior and exterior base

angle bisectors, defined in Fig. 4

Superscripts

’ unrealistic

* critical, or parabolic

o SN

T transpose

=

Unit Vectors

gy e

gc in chordal direction

> >

e5 normal to e.r in transfer plane

>

ey normal to transfer plane, defined in Fig. 2
> -

®r1 r)/r;

xiii
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€r2 "I/

ge in transversal direction

Special Notations

E elliptic

H hyperbolic

P parabolic

s simple region, hodograph plane (see Figs. 5
and D-1)

N nonsimple region, hodograph plane (see Figs. 5
and D-1)

ST short transfer

LT long transfer

Q tip of projection of velocity vector on the
transfer plane

Qi* orthopoint, on constraining hyperbola for
terminal i

Qixg orthopoint, corresponding to lst (absolute) minimal
l-impulse (at terminal i) solution

Qi*b orthopoint, corresponding to maximal l-impulse
(at terminal i) solution

Qi*c orthopoint, corresponding to 2nd minimal l-impulse
(at terminal i) solution

Q. & orthopoint, corresponding to 3rd minimal l-impulse

i*d . : .

(at terminal i) solution

T,. transfer trajectory with stationary impulse at

J terminal j
T*ja transfer trajectory with absolute minimal impulse

at terminal j

Xiv
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i

%

T el P T

i

Ta5p
Taje

Tusq

transfer trajectory with maximal impulse at
terminal j

transfer trajectory with 2nd minimal impulse
at terminal j

transfer trajectory with 3rd minimal impulse
at terminal j

minimal 2~-impulse transfer trajectory
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I. Introduction

The transfer between two space orbits by applying two
terminal impulses under specified terminal conditions is a
problem of both theoretical and practical interest in the
fuel-optimal space maneuvers. The problem is to determine
the optimal transfer trajectory so that the sum of the two

terminal impulses is a minimum.

Investigations of the optimal two-impulse orbital trans-

fer problem were first done by Hohmann,1 and analytical

foundations of such investigations were mostly attributed to

Lawden's work.2’lo

The 2-terminal, 2-impulse transfer problem,

a particular case of Lawden's more general problem, was first

3

formulated and treated by Vargo,~” and later investigated by

many contemporary authors. Among the previous work done on

12

this problem, Altman and Pistiner established an eighth

degree polynominal equation governing the optimization, which

formed the basis for much of the current development, and a

similar equation was also given by Lee.16

The octic equation

was later reformulated in symmetric velocity coordinates and

5
studied under broad terminal conditions by the author.2

result of such investigations, one bewares of the following
possible complications in the solution of the problem:
1. The. presence of extraneous roots of the octic equa-
tion, which do not belong to the extremal impulse

solution.



2. An extremal impulse solution of the octic may give a
maximal total impulse instead of a minimal one.

3. There may exist more than one local minimal total
impulse solution.

4. The arising of an unrealistic optimal solution, that
is, a solution resulting in a transfer trajectory
which leads to the final terminal via infinity.

In view of these possible complications, the determination
of a realistic absolute minimal 2~-impulse solution from the
octic equation presents a formidable task, involving many
pitfalls, in both theoretical analysis and numerical computa-
tions. In the author's previous work, 25 instead of using an
algebraic approach to the octic equation, a geometric
approach in the velocity space is adopted, and some of the
vital questions concerning the solutions were answered, and
several necessary or sufficient conditions were derived.

Based on this preliminary study, the present paper intends

to give a systematic prediction on the characteristics of the
minimal 2-impulse solution under various terminal conditions
by using the bounding trajectories, a concept first introduced
in Ref. 25. It will be seen that, by the proper choice of a
bounding trajectory pair, a great deal of information on the
minimal 2-impulse solution, qualitative and quantitative, may
be obtained without solving the octic equation, and this
information may in turn help to locate the optimal solution

in numerical computation.



II. Formulation in Symmetric Velocity Coordinates

Let the terminal conditions be specified by the state
. - - e adbe . 0 .
coordinates (rl, V01) and (r2, V02) at the initial and
final terminal points respectively, the problem is to

minimize the total velocity impulse

£=f +f, (1)
where
£, 0= [avy| = vy - Vgl (i = 1,2) (2)

and-vi is the terminal velocity required for the transfer
(Figures 1, 2)., Resolving into the oblique velocity
components along the terminal radial direction and the

chordal direction (Figure 3), Godal's Compatibility

conditions4’ 18 enable one to write
[ -— -h
V1 = Vcec + VRerl
N - (3)
V2 = Vcec + VRer2

where the velocity coordinates VC and VR are connected by

- U v
VcVR =3 tan 5 (4)

The central angle ¢y and the distance d, as defined in
Figure 3, are completely determined by the position vectors
rl and r2,

O<y<m. The coordinate pair (Vc, VR) is known as the

which are assumed to be noncollinear, that is,

symmetric velocity coordinate pair in view of Equations (3).
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and (4) which hold for all transfer trajectories between
the two terminal points.

The analytic condition governing the optimal transfer
is given by

dfl + df2 =0 (5)

which, after performing the differentiation together with
Equations (2), (3) and 4), yields the two polynomial equations,

. . ., 2
known as the stationarity octics 5,

;2% C Vosx = 0 (6¢)
8

z R Voxs = O (6R)

n=0

where the coefficients Cn and Rn are functions of the

following terminal parameters:

i

b

Moi = v0i - ey (7)
Noi = Voi * ©¢ (8)
(i = 1,2)
— w2  _
Poi = VOi 2K cos ‘Fi (9)
= K v
K d tan 5 (10)
Thus we may write
Cp = Cu(Myyr Myor Nggr Noor Poyr Poyr K)
(11)
Ry = Ry(Myyr Mgor Nggr Nyyr Pgyr Popr K)

For fixed terminal conditions all these coefficients are

constants, and Equations (6C) and (6R)define a pair of optimal



values Of Vi,, and Vp,, for an internal extremum of f.
Derivations of the stationarity octics and the explicit
forms of Equations (1))are given in Appendix A, and formulas
for the transfer trajectory parameters in terms of the
symmetric velocity coordinates VC and VR are summarized
in Appendix B.

As shown in Reference 25, the minimal 2-impulse transfer
trajectory T,,, defined by Equation (5), is bounded between

the two transfer trajectories, T*l and T*2’ defined by

df1 = 0 and df2 =0 (12)

respectively. 1In terms of the coordinate V Equation (12),

CI
together with the constraint Equation (4), yields the two

fourth degree equations

4 3 2
VC*l - NOlVC*l + KMOlVC*l - K = (13C-1)
vi N V. 4 RM. V.. -RK:=0 (13C-2)

C*2 02Vc#*2 02Vc#2

20
known as the stationatrity quartics , one for each
terminal. Similar equations may be written in terms of the
and V

variables V The trajectories Tay and T

R*1 R*2° *27

defined by Equations (13C-1, 2), have the physical
significance of being the transfer trajectories between
the same two terminal points Ql and Q2, with stationary
velocity impulses at Q and Q, respectively, hence they
will be referred to as the stationary l-impulse transfer
trajectories. Analytic studies of Equations (13C-1, 2)20

show that each quartic has at least two and at most four



real roots, depending on the terminal conditions. 1In
other words, each stationarity quartic may yield two to
four distinct stationary l-impulse transfer trajectories.
The choice of such trajectories for the bounding pair will
be postponed until the transfer geometry in the velocity

space is studied.






III. Preliminaries on the Two-Terminal Transfer

Based on the geometric studies of two-terminal transfers

18, 20, 25 some

in the position and velocity spaces,
previously developed concepts and terminology which form
the background of the present investigation will now be

briefly given below.

A. On the Constraining Hyperbola

1. The tip of the transfer velocity vector at each
terminal required for a 2-terminal transfer, is confined in
the hodograph plane on a hyperbola, defined by Godal's
compatibility condition, Eq. (4). Such a hyperbola is
called the constraining hyperbola for the terminal velocity,
and there is one for each terminal. The geometry of each
constraining hyperbola is completely determined by the two
-
1
constraining hyperbola, and its principal geometric elements

position vectors and ;;. Characteristics of the
are summarized in Appendix C.

2., Each constraining hyperbola consists of two
branches:

the positive branch: Vc > 0, VR > 0 , associated with
short transfers;

the negative branch: Ve < 0, Vg < 0 , associated with

long transfers.

11



The positive branches of the two constraiﬁing hyperbolas
constitute a short transfer pair, while the two negative
branches, a long transfer pair (See Figure 4). The half-
plane (VC > 0) in which the positive branch lies will be
designated as the positive half-plane, and that (VC < 0) in
which the negative branch lies, the negative half-plane.

3. All solution points in the hoddgraph plane for the
two—-terminal transfers, optimal or nonoptimal, are
necessarily confined on the constraining hyperbolas. The
solution point (Ql) for the initial terminal velocity and
its corresponding point (Qz) for the final terminal
velocity form a pair of transfer points. The line
connecting a transfer point pair bisects the angle of
separation w.4’ 18

4. The type of the transfer conic will be elliptic,
hyperbolic, or parabolic according as the transfer point
Qi lies inside, outside, or on the critical circle, V = V¥,
in the hodograph plane. Thus, each branch of the constraining
hyperbola is divided by the critical circle into two
portions: the elliptic portion and the hyperbolic portion
as shown in Figure C-1, Appendix C. The points of
intersection of the hyperbola and the critical circle are
the critical points corresponding to parabolic transfers.

The hyperbolic portion, including its end point, the critical
point, in the half-plane, VX > 0, is the unrealistic portion

. . . s . . 2
since it corresponds to unrealistic transfer trajectories. 0

12
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B. On the Stationary One-Impulse Transfer and the Orthopoints
1. Geometrically, the stationarity quartic, based on
Equations (12) expresses the condition of orthogonalitya'20

> —

AV; = dv, =0 (14)
It follows that, when a terminal velocity?;0i is
prescribed, each solution point for the stationary one-
impulse transfer is given by the foot of the normal drawn
from the point QOi' the projection of the tip of VOi in the
hodograph plane, to the constraining hyperbola. Such a
point is called the orthopoint with respect to the fixed
point QOi' and is designated as Qi*' Hence each real root
of the stationarity quartic corresponds to one orthopoint
on the constraining hyperbola, and vice versa.

2. As each stationarity quartic may have two to four

real roots, the number of orthopoints for a given terminal
velocity point QOi range from two to four. Previous

20

studies show that these orthopoints follow a general

pattern as follows:

Orthopoint Designation Nature of fi
Qi*a 1lst minimum, absolufé.
Qi*b maximum.
Qi*c 2nd minimum, local.
Q; xg 3rd minimum, local.

14



Here the points Qi*b and Qi*c may be coinciding or missing
in the real plane, depending on the location of QOi' We
may speak of the orthopoint as elliptic, parabolic, or
hyperbolic, and realistic or unrealistic, according to the
nature of the portion of the constraining hyperbola on which
it locates.

3. The hodograph plane may be divided into different
regions for the terminal velocity point QOi according to
the number and nature of the orthopoints associated with
it (See Figure 5).

The simple and nonsimple regions are separated by the

evolute of the constraining hyperbola, which is a form of

Lamé20 as follows:

Region Designation Orthopoints

Simple S 2, one on each branch.
Nonsimple N 4, three on the nearer branch

(Qi*a' Qi*b' Qi*c)’ and one

t th
on the other (Qi*d)

On the boundary two of the three points on the same branch
coincide, Q, =Q. , where £, is neither minimum nor

i*b i*c 1
maximum; and at each vertex of the boundary, all three
points on the same branch, Qixgr Q#p and Qi xc coincide,
with absolute minimum ;- Typical distributions of the
orthopoints are shown in Figure D-1, Appendix D (where

the terminal subscript i has been omitted for simplicity).

15
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The realistic and unrealistic regions are partitioned

according as the first minimal point, (Qi*a), hence its
associated trajectory, is realistic or unrealistic, as
shown in Figure 5. The bounding lines consist of the
critical lines, which are the normal lines through the
critical points in the half-plane Vx > 0, and portions of

the VC - axis.

The realistic region may be further divided into a
number of subregions for the point QOi according to the
types of the trajectories associated with.the orthopoints

as follows:

Subregion Designation
Double Elliptic EE
Hyperbolic-Elliptic HE
Double Hyperbolic HH

Here the first letter indicates the type of the trajectory
associated with Qi*a’ and the second letter, that
associated with Qi*d' The points Qi*b and Qi*c’ if they
exist, and their associated trajectories will be of the
same type as that of Qi*a’ or Qi*d' On the critical lines,

at least one of the trajectories is parabolic.

Likewise, the unrealistic region may be further divided

as follows:

Subregion Designation
Single Unrealistic H'E
Double Unrealistic H'H®

17



Here the same convention of designations used for the
realistic subregions is adopted, with the superscript °
indicates unrealistic transfer.

All the foregoing divisions of hodographic regions
apply, of course, to either terminal point. For details,

see Appendix D.

18



IV. The Bounding Trajectories for the Minimal
Two-Impulse Transfer

A. The Optimal Transfer Arc Pair

Assume the terminal velocity point QOi is fixed, and
let the transfer point Qi move along the constraining
hyperbola. For convenience we designate the hyperbolic arc
as positive or negative according as the distance 6316;(=fi)
is increasing or decreasing as Qi moves from left to right.
Evidently, the arc will change sign only when Q; passes
through an orthopoint. The stationarity condition expressed
by Equation (5) indicates clearly that the two-impulse
optimal solution must locate on a transfer pair of arcs of
opposite signs. The essential types of such arc pairs are
shown in Figure 6.

In type (A) the endpoints of the arc pair are the
minimal orthopoints, one on each arc, together with their

cotrajectory points. They may be either Qixar Q or

i*c’

Q . It is assumed that no other orthopoints exist on

i*d
either arc between its endpoints. On such an arc pair
there is one and only one local minimal solution.t

Type (B) is a variation of type (A). It contains a
maximal orthopoint on one of the arcs between its
endpoints. Analytic studies show that there is either

one local minimal solution and one local maximal solution

on the arc pair, or none.? If such solutions exist, they

i See Appendix E

19
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will actually locate on the subarc pairs defined by the
two orthopoints, one minimal and one maximal, on the same
arc..

Type (C) is another version of type (A), wherein one of
the minimal orthopoints is unrealistic, and the arc pair is
defined on the righthand side (Figure 6) by the unrealistic
critical point pair. The two-impulse minimum then may be
either realistic or unrealistic. In the latter case the
realistic optimal solution will be indefinite, given by an
arbitrary point pair on the arc pair, close to the
unrealistic critical point pair.20

In type (D) the arc pair is defined by the maximal
orthopoints, one on each arc, together with their cotra-
jectory points. It contains one maximal solution only, but
no minimal solution.T

Thus, in order to locate the two-impulse minimal
solution it is only the arc pairs of type (A) and its two
variations (B) and (C) which need to be examined. The
exclusion of the arcs of the same sign automatically
prevents the entering of the extraneous roots of the
stationarity octic, if any; and the exclusion of the arc
pair of type (D) further prevents the entering of the
maximal solution. Consegquently the problem narrows down
to searching the absolute minimal solution on the arc

pairs of types (&), (B), and (C), where the local minimal

solutions are located.

TSee Appendix E

21



Since each optimal arc pair is essentially defined by
two orthopoints, one at each end, together with their
cotrajectory points, we may specify such an arc pair by
giving the two orthopoints as its coordinates, e.g.,

(Ql*a’ Q2*d) is a typical optimal arc pair, which may also
be written more compactly as (a, d). By ignoring the order
of the terminal points, we may regard the arc pairs (a, 4)
and (d, a) as of the same combination (ad). Evidently,
optimal arc pairs of the basic types (A) may have the
following six combinations:

(aa), (ad), (dd), (ca), (cc), (cd).

By associating b with one of the endpoints, a or c, we
obtain the combinations for the arc pairs of the type (B).
There are also six such combination; namely,

(ab-a), (ab-c¢), (ab-d), (cb-a), (cb-c), (cb-4d).

Arc pairs of type (B) and the last three combinations of
type (A) would not be possible unless one or both of the
terminal velocity points, QOl and Q02 are in the nonsimple
regions, of course. By replacing any one of the ortho-
points by an unrealistic critical points as one endpoint,
we obtain the optimal arc pairs of type (C).

As regards to the selection of the optimal arc pair for
the absolute minimum, no rigorous rules are available at
present. However, the following observations may serve as

a guide:
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1. When an optimal arc pair of the combination (aa)
appears, the two absolute 2-impulse minimum are most likely
on that pair.

2. The local minimum provided by the arc pair (dd)
is usually not absolute.

Thus, to locate the absolute 2-impulse minimum we first
look for the arc pair (aa). The arc pair (dd), if it exists,
may usually be ignored. In the absence of arc pairs of the
combination (aa) and (dd), or there is any doubt, one may
always resort to the computation of all the local minimal

solutions and comparision, of course.

B. The Bounding Trajectory Pair

Associated with each optimal arc pair there are two
transfer trajectories, one corresponding to each endpoint
pair. The existence of an interior minimum for the two-
impulse transfer on such an arc pair shows that the minimal
two-impulse transfer trajectory, denoted by T,,, is actually
bounded between the two bounding trajectories, hence the
term "bounding trajectory pair". It will be shown that T,,
is not only bounded by such a trajectory pair in the position
space, but also in the velocity space and many other parameter
spaces. Thus essential information on the characteristics
of the two-impulse minimum may be obtained by examining
its bounding trajectory pair.

Since an endpoint pair of the optimal arc pair consist

of basically one orthopoint and its cotrajectory point, a
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bounding trajectory is in general a stationary trajectory
with respect to the velocity impulse at one of the terminals.
In the special case wherein one of the endpoint pair is
critical and unrealistic, the corresponding trajectory is
the unrealistic parabola, which itself is unbounded in the
position space; nevertheless, it may serve as a bounding
trajectory. Designations of the bounding trajectories are
made in accordance with the endpoints they associate with

as rollows:

Endpoint Bounding Trajectory
Q. T,. r1lst minimal (abs.) one-impulse transfer
i*a *ia
Qi*b T*ib rmaximal one-impulse transfer
Q; xc Txj;c r2nd minimal one-impulse transfer
Qi*d T*id ¢ 3rd minimal one-impulse transfer
*
Qi*' T*i sunrealistic parabolic transfer

With this designation convention the coordinates specifying
an optimal arc pair may now be extended to a bounding
trajectory pair. For example, corresponding to the arc

*la'’ T*zd)'
Consequently, the different combinations previously given

pair (a,d), we have the bounding trajectory pair (T

for the optimal arc pairs alsc apply to the bounding
trajectory pairs. Thus corresponding to the six possible
combinations for the arc pairs of type (A), there are six
possible combinations of the bounding trajectory pair.
The same can be said about the bounding trajectory pairs

associated with the arc pairs of types (B) and (C).
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Directly from the previous analysis of the optimal
transfer arc pairs, the following observations may now be made:

l. Basically, a bounding trajectory pair is formed by
two transfer trajectories under the same terminal conditions,
one with a minimal initial velocity impulse, and the other
with a minimal f£inal velocity impulse. (Such a trajectory
pair will be generally denoted by (T*l, T*z). Subscripts
will be added in accordance with the endpoints of the assoc-
iated transfer arc pair whenever necessary.)

2. A bounding trajectory pair associated with the
optimal transfer arc pair of type (A) will bound one and only
one local minimal two-impulse transfer trajectory between
them; and, in particular,

(a) A bounding pair (Tyq,r Tapy) formed by the two
first minimal (absolute) one-impulse transfer trajectories
with respect to the initial and final velocity impulses
separately usually bounds the absolute minimal two-
impulse transfer trajectory;

(b) A bounding trajectory pair (T*ld’ T*Zd) formed
by the two third minimal one-impulse transfer traject-
ories with respect to the initial and final velocity
impulses separately bounds only a local minimal two-
impulse transfer trajectory which is usually not the
absolute one.

2. When the optimal arc pair is of the type (B), the
bounding pair made of the two minimal one-impulse transfer

trajectories may bound one local minimal two-impulse transfer
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trajectory, or none. If it does bound one, then there exists

a closer bounding pair formed by the two transfer traject-

ories, one with a minimal velocity impulse, and the other with

a maximal velocity impulse, both at the same terminal, e.g.(%miﬂmﬂ.

3. When one of the bounding trajectories is unrealistic
(optimal arc pairs of type (C)), the minimal two-impulse
trajectory bounded may become indefinite.

Several typical bounding trajectory pairs are
illustrated in Figure 7.

It is to be noted that although there appears to be a
great variety of the optimal transfer arc pairs and their
associated bounding trajectory pairs, they do not all occur
frequently. For example, when both terminal velocity points,
QOl and Q02, are in the realistic simple regions, as is
usually the case. The pattern of the optimal arc pairs can

fall under the following two classes only:

Class One Kind of Transfer Other Kind of Transfer
I (a, a) (dl d)
iI (a, d) (d, a)

In Class I the absolute minimal two-impulse transfer trajectory
will likely be bounded by the trajectory pair (T*la' T*2a)’

but unlikely by the pair (T*ld’ T*Zd)' Hence in this case

it is only to the former pair our attention is to be focused.
In Class II each of the bounding pairs (T*la’ T*Zd) and

(T*ld’ T*Za)’ one in each kind of transfer, bounds a local
minimal two-impulse transfer trajectory in that kind, and

in the search of an absolute minimum, the consideration of
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of both kinds is then necessary. In either case the number
of bounding pairs to be considered is no more than two.

Real complications can arise only when one or both of Q1 and
Q02 are in the nonsimple and/or unrealistic regions, wherein
more types of the optimal arc pairs may appear, and more
bounding trajectory pairs are to be considered. Further

discussions will be found in the next section.
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V. Qualitative Predictions on the Minimal Two-Impulse
Transfer

A, The Kind and Sense of the Transfer

For the transfer between two terminal points separated
by a central angle 0 < ¥ < =, there is a definite sense of
motion around the field center, associated with each kind
of transfer. In the following we will arbitrarily assign
a positive sense to the short transfer, and a negative
sense to the long transfer. It is clear that the two
trajectories of a bounding pair (T*l, T*z), as defined in
the preceding section, are of the same kind and sense, and
so is the minimal two-impulse trajectory T,, bounded between
them. Thus, whenever a bounding trajectory pair is given,
the kind and, hence, the sense of the minimal two-impulse
trajectory bounded is fixed. Obviously the kind and sense
of a bounding trajectory pair depend only on those of the
optimal arc pair, but not on the particular endpoints
defining it.

As pointed out in Reference 25, it is interesting to
note that, while the sense of the minimal two-impulse
transfer always agree with those of the two bounding
trajectories, it does not necessarily agree with those of

the two terminal orbits even though they have the same sense-

+When the two terminal orbits are noncoplanar, it is
to be understood that the sense of motion of each orbit
refer to that of the projection of the orbit on the transfer

plane.
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This peculiar phenomenon stems from the fact that the
stationary one-impulse transfer trajectory does not always
agree in sense with the corresponding terminal orbit. The
particular case in which two terminal orbits of the same
sense call for a minimal two-impulse transfer in the opposite

sense 1is illustrated in Reference 25.

B. Type of the Transfer Conic

A study of the hodograph geometry enables one to
establish the following rules for determining the type of
the minimal two-impulse transfer conic in terms of the
bounding trajectories:

1. T,, will be elliptic if at least one of Tyq and Ty,
is elliptic, and none of them is hyperbolic;

2. T4, will be hyperbolic if at least one of Tag and
T*2 is hyperbolic, and none of them is elliptic;

3. T4s will be parabolic if both Tay and T,, are
parabolic.

Thus, once the bounding trajectory pair is chosen, the type
of the minimal two-impulse transfer conic is uniquely
determined under the foregoing three conditions. The only
ambiguous case is that the bounding trajectory pair consists
of one ellipse and one hyperbola, wherein the type of T,,

is indeterminate.

The type of each bounding trajectory, T*i’ is of course,
determined by the terminal conditions. Once the terminal

point Qi is located in the hodograph plane, the region
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diagrams illustrated in Figure 5 will enable one to tell
immediately the type of Taye

Finally, it is to be mentioned that, while the two-
impulse minimum always agrees in type with its two bounding
trajectories of the same type, it is not necessarily so
with the two terminal orbits of the same type. Just like
in the case of kind and sense, this stems from the fact
that a one-impulse minimal transfer trajectory does not
always agree in type with the corresponding terminal orbit,
a situation found in Reference 20. Thus, for minimal total
impulse, it is possible that two elliptic orbits call for
an hyperbolic transfer; and that two hyperbolic orbits, an

elliptic transfer.

C. The Realistic and the Unrealistic Transfers

Concerning the nature of the minimal two-impulse
transfer, realistic or unrealistic, the following criteria
are evident:

1. 7T,, will be realistic if both Ty, and T,, are
realistic;

2. T,4 wWill be unrealistic if both Ty, and T,, are
unrealistic.

Thus once a bounding trajectory pair is found, the nature
of T,, is determined, unless the bounding pair consists of
one realistic and one unrealistic, wherein the nature of
T,.x is not ascertained. The optimal transfer arc pair

under Condition 2 actually reduces to one point pair--the
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unrealistic critical one; and the two bounding trajectores,
Ty, and T,,, both coinciding with the unrealistic parabolic
trajectory.

It is to be noted that, while the two-impulse minimum
in one kind of transfer is unrealistic, there may exist a
realistic minimum in the other kind. Thus, it is sometimes
advisable to examine the bounding trajectory pairs in both
kinds. This is necessary when the two first minimal one-

impulse transfer trajectories, Tyqy 204 T are of unlike

*2a’
kinds, for example, the condition under Class II, Section
Iv-B (last paragraph). In such a case it is guite possible
to have one realistic absolute minimum in one kind, and one
unrealistic local minimum in the other. The foregoing
criteria apply to either kind, of course.

Obviously, the nature of each bounding trajectory is
determined by the terminal conditions. For two fixed
terminal points, such a determination may be readily made
by using the hodographic region diagram in Figure 5 once
the terminal velocity point QOl is located. It is clear
from such diagrams that Condition 1 is satisfied for both
kinds when Q01 and Q02 are both in their realistic regions;
and Condition 2 is satisfied for both kinds when they are
both in their double unrealistic regions. In the latter case,

there exists no realistic absolute minimum solution of the

problem, and the solutions in both kinds are indefinite.
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D. The Multiplicity of the Minimal Solutions

By multi-minimum we mean distinct transfer trajectories
giving the same local minimal total impulse f,, under the
same terminal conditions. Evidently, no multi-minimum in
the same kind of transfer can be expected unless there are
multiple pairs of bounding trajectories in the same kind for
choice, corresponding to the multiple optimal transfer arc
pairs of that kind. Thus, a pre-requisite for the occurrence
of a multi-minimum of one kind is that at least one of the

terminal velocity points, Q and Q02, is in its nonsimple

01
region. Although there are six combinations for the optimal

arc pairs of the basic type, as given in Section IV-A,

studies of the distributions of the orthopoints in the constrain-
ing hyperbola show that there can be no more than three

different arc pairs of the same kind. Consequently, no
multiplicity higher than three can be expected for the same

kind of transfer. Details of such studies are given in Appendix

F, from which the following assertions may be made:

Concerning Multi-Minimum of the Same Kind.

1. No multi-minimum may arise when both terminal
velocity points are in their simple regions.

2, When one and only one of the terminal velocity
points is in its nonsimple region, there exists
at most a double minimum.

3. No triple minimum can be expected unless both
terminal velocity points are in their nonsimple

regions.
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4. No multiplicity higher than three can be expected

under any terminal conditions.

The actual existence of a double minimum of the same kind
has been illustrated in Reference 25. However, whether a
triple minimum of the same kind actually exist has not been
ascertained. A proof of its existence or nonexistence would
be of theoretical interest.

Now considering both kinds of transfers, it is evident
that a double minimum is possible even when both terminal
velocity points are in their simple regions, since there is
one local minimum in each kind in this case. Maximum multi-
plicity will be higher when one or both of the terminal
velocity points are in their nonsimple regions. However, as
shown in Appendix F, the total number of optimal arc pairs
of both kinds cannot exceed four under any fixed terminal
conditions. Thus a quadruple minimum of mixed kinds can be
expected at most. A study of Appendix F enables one to
further assert the following:

Concerning Multi-Minimum of Mixed Kinds

1. When both terminal velocity points are in their
simple regions, there exists at most a double
minimum,

2. When one and only one of the terminal velocity
points is in its nonsimple region, there exists

at most a triple minimum.
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3. When both terminal velocity points are in their
nonsimple regions, there exists at most a guadruple
minimum.

4. No multiplicity higher than 4 can be expected under
any terminal conditions.

As example of a quadruple minimum, consisting of two

double minimal,one in each kind, all with the same minimal
f4.4+ is shown in Reference 25. .

E. The Identical Minimal Two-Impulse and Minimal One-
Impulse Solutions

It is obvious that when the two trajectories of a
bounding pair becomes coincident, the two-impulse minimal
transfer trajectory bounded between will necessarily
coincide with them, that is,

Tax = T*l = T*2

Thus, the minimal two-impulse solution will be identical to
the two minimal one-impulse solutions, one with respect to
the initial terminal impulse, and the other, the final
terminal impulse, when they themselves are identical. This
can also be easily seen by referring to the basic governing
equations (5) and (12). 1In fact, the simultaneous validity
of any two of the three equations assures the validity of the
third one. Thus we conclude:

The coincidence of any two of the three trajectories,

Teyr Tay and Ty, implies the coincidence of all three.

The optimal transfer arc pair now actually reduces to merely
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a transfer point pair. The unrealistic case mentioned
under Heading C offers a special example of this case.
An analytic condition for the occurrence of such
identical solutions, as deduced in Reference 25, is
K[(Moz-M01)2'(Noz'N01)2]2 = (Mg2—Mg1) (Ng2-Ng;)
(Mg2Ng1-Mg1Ngp)? (15)
which may be written symbolically
F(T1,52,V01,V02) = 0 (16)
Thus there is a definite relation to be satisfied by the

> > > > .
four terminal vectors, rj;,r,,Vp: and Vg, in order that the

two-impulse minimization and the one-impulse minimizations
at the initial and the final terminals separately will yield
the same trajectory. Such a relation will be referred to
as the coincidence condition for the two-impulse minimization
and the two one-impulse minizations for the two-terminal
transfer. It can be shown that the condition given by
Equation (15) is not only necessary, but also sufficient.
It is interesting to note that Equation (15) is; in particular,
satisfied by

Mgy = Mg and Ng; = Npy (17)
In the case of apside-to-apside transfer, My; = Mg, = 0,
Equation (17) lead to

VOP2 = T2 (18)
vV o1 r
op

Thus, a sufficient condition for the coincidence of T*l’ T*2

and T,, is that the base triangle determined by the two
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position vectors, and the velocity triangle determined by the
two in-plane terminal orbit velocities are similar and
orthogonal.

Finally, it is to be noted that, in the previous assertion
on the coincidence of the three transfer trajectories, T*l’
Typ and Ty, it has been tacitly assumed that the two terminal

impulse functions, £, and £ are both differentiable. This

1 27
assertion and the coincidence condition, Equation (15) all
break down when fi and fé do not both exist. Such a case
may be called singular. In a singular case, it is possible
to have T,, coincident with one of Tey and Teqs which do not
themselves coincide. The special case wherein one of the
terminal orbits passes through both terminal points, is a
singular one. For example, if the initial terminal orbit

also passes through the final terminal point, then this orbit

itself is T,,, and we may have Ty, = Tyq ¥ Type
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VI. Quantitative Predictions on the Minimal Two~Impulse

Transfer

So far the predictions have been made on the qualitative
basis. Quantitative predictions on the various trajectory
variables and elements are now in order. In the following,
the upper and lower bounds of these trajectory quantities

will be established by using the bounding trajectory pair.

A, The Position Vector

Consider a pair of trajectories in a two-terminal
Keplerian trajectory family. It is obvious that the one
with a higher initial path angle (with reference to the local
transverse direction) will remain higher in radial distance
on any intermediate radius vector throughout the trajectory
range; for, otherwise, the two trajectories will intersect
at least at one intermediate point between the two common
terminal points, a fact impossible for two distinct Keplerian
conics. Such an observation enables one to classify a pair of
bounding trajectories as high and low, and indicate them by
the subscripts H and L respectively. Thus, instead of T*1

and T,,, we write T and T,,. Quantities pertaining to the

*T
high, or the low trajectory may be indicated in the same way.
Such notations will be employed in the following formulations

whenever it is convenient.
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The existence of an interior point pair on an optimal
transfer arc pair for the minimal two-impulse solution (see
Section IV and Appendix E) implies that such a minimal
trajectory is bounded between the two trajectories of the
bounding pair in the position space. This assertion follows
directly from the preceding argument, and will become more
clear when we come to the terminal path angles under the

next heading. Mathematically, we may express this fact by

Tap, $ Tax S Tag (0 g a0 < W) (19)

where the three radial distances Tyrr Tagr and Iy, are taken
along the same radius vector between the two terminal
position vectors ;l and ;2 as shown in Figure 8(a) (where
equality signs in the foregoing formula hold only on the
terminal radius vectors (A8 = 0, ¢). However, if they do
hold on some intermediate radius vector, they will hold on
every such radius vector, and the three trajectories, T*L'

T and T,, will coincide, a case in which the minimal

*H’
two-impulse solution and the two minimal one-impulse
solutions are identical, as presented in Section V-E. This

special case will be excluded in the following analysis.

B. The Terminal Quantities

Direction of Departure and Arrival
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Consider a typical optimal transfer arc pair as shown
in Figure 8(b), the geometry shows clearly that the three
path angles ¢, , ¢,,, and ¢,, at the initial point satisfy

the inequality

S1en € Crax < f1ay (20-1)
which is, in fact, the basis for the Inequality (19)

Thus, the high trajectory of a bounding pair has also a high
initial path angle, and vice versa. However, at the final
terminal point the roles of the high and low trajectories

are reversed, and we have

¢2*H < ¢2** < ¢2*L (20_2)

which is also evident from Figure 8(b). It is to be noted
that, although the reference here is made to Figure 8(b), in
which a transfer arc pair of short kind is shown, Inequalities
(20~1,2) hold equally well for the long kind of transfer, if
we always measure the path angle ¢i from the transversal
direction in the direction of motion, hence, limiting it to

% < ¢i < % in each kind. These inequalities show that a

2
minimal two-impulse transfer trajectory is bounded by its

bounding trajectory pair in the directions of departure as

well as arrival.
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The Transfer Velocities and Their Components

In view of Godal's compatibility condition, Equation (4),
the chordal and radial components of the terminal transfer
velocities change monotonically along the constraining hyper-
bola. Thus, with the aid of Figure 8(b), we deduce

Ve, < Vs < Vpsg (21)
and

Vorn
From Inequality (22) we further deduce for the transversal

< VC** < VC*L (22)

component,

w,.) (i =1,2) (23)

v 01! *L,

Woilug < Woiluw

since Véi is proportional to V No such simple statement is

c*
available for the other component Vr of the coordinate pair
(Vr, Ve) as it is more involved. From Inequalities (21 to 23)
we see that each of the three terminal transfer velocity
components Vo, ., Vouys and (Vei)** is bounded between the
corresponding components of the bounding trajectory pair.
However, this is not always true for the resultant transfer
velocities, as it will be seen below.

In dealing with the resultant velocity at either terminal,
it is important to note that, for the transfer between two
fixed terminal points, there exists an overall minimum veloc-
ity at each terminal, given by the minimum energy points,

which is the vertex of the branch of the terminal constraining

hyperbola (see Table C-2, Appendix C). Thus, it is essential
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to distinguish whether the optimal transfer arc contains the
minimum energy point or not. A study of the hodograph geome-
try enables one to deduce that, when the optimal arc contains

no minimum energy point,

V.*L < V‘** < V_*H if V.*L < V'*H
1 1 1 1 1 (i = 1.2) (24)

v xg < V.** < V.*L if v *7, > V*H

i i i i
In case it does contain such a point, we replace the lower

bound by (Vi)min. which has the magnitude,

7.

_ = /2 v L
(Vi)min. =4, = /(;i tan % tan - (25)

The Terminal Velocity Impulses

With reference to Fig. 8(b), it is evident that

) (26-1)
*2

(AV < (AV < (AV

p’,, p1),, Pl

< (AV ) (26-2)
P2 *]

< (AV

(AV )
P2, P27 .,

2)
where the AVP's are the in-plane velocity impulses. Going from
these in-plane components to the resultants in the noncoplanar
case, we note first that the out-of-plane terminal velocity

components, (V ) if present, do not alter the location of

ONi
the minimal 2-impulse solution in the hodograph plane; and
second, that under fixed terminal conditions, such a component
is a constant at each terminal, hence, its effect on each

velocity impulse at the same terminal is to increase it by a

constant component in accordance with
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_ 2
fi - /QAVPi) *+ Voni

(27)

Consequently, the preceding inequalities hold also for the
resultant velocity impulses at each terminal:

Eax1 < Fpws < F1ap (28-1)

f < £ < £ (28-2)

from which we obtain immediately by addition,

fl*l + f2*2 < £, < fl*2 + f2*l (29)

Thus, each of the two terminal velocity impulses and their

sum required for a minimal 2-impulse transfer are well bounded,

with their upper and lower bounds given by the two minimal

l-impulse solutions. In fact, two smaller upper bounds for

f,, can be found to be
f*l = fl*l + f2*l (30-1)
f*2 = fl*2 + f2*2 (30-2)

where f*l is the sum of the two terminal impulses required on

T*l’ and f*2, that on T*2’ since
£ax < Fuq (31-1)
fo0 < f*2 (31-2)

by definition. That the quantities f*l and f*2 are both less

than the upper bounds in the Inequality (29) can be easily
seen since, again by definition, we have

£ < £ £ < £ (32)

1*1 1%2 ' 2%2 2%1
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C. The Trajectory Elements

The Angular Momentum and the Semilatus Rectum

Noting that the angular momentum h is related to the

chordal component V., of a terminal transfer velocity by

C

h = VCd (33)
and that the distance d is a constant for the transfer between
two fixed terminal points, we obtain immediately from Inequal-
ity (22),

h* < h** < h (34)

which also implies that

E*H < Tap < Tup (35)

in view of the orbital relation,
- _ .2
r = h"/u (36)

where T is the semilatus rectum of the trajectory conic.

The Orbital Energy and the Semimajor Axis

From the Vis Viva Integral,

2

k = ;iv - (37)

Rie

we see that, to compare the crbital energies of different
trajectories through the same terminal point, we need only to
compare the magnitudes of their velocities. Here again the
presence or absence of a minimum energy point in the optimal
arc under consideration is of importance, and inequalities

similar to those for the transfer velccities may be written
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e

for the orbital energy as follows:
In the absence of the minimum energy point,

k*L < Kpx < k*H ' if k*L < k*H

(38)

Kap < Kuse < k if k.. >k

H *L L *H

In case such a point is present, we replace the lower bounds

in the preceding inequalities by kmin which, in terms of
o7

the terminal parameters, is given by

2u
k . = - (39)
mine. rl + r2 + Z

The semimajor axis (a) of a trajectory conic in a given
Newtonian field depends only on the orbital energy through

the relation,

_ )Y (40)

27 2Tk

However, while k changes continuously along a constraining
hyperbola, "a" changes discontinuously at the critical point
Q*; it also has a local minimum in the elliptic portion at
the minimum energy point. Thus, to establish the upper and
lower bounds for the semimajor axis of a minimal 2-impulse
transfer trajectory, it is essential to examine whether the
optimal arc contains a minimal energy point, or a critical
point. When both points are absent, we have

Ayp, < Bxx < Auy if Byp, < Qxy

(41)

a*H < Agy < a*L if a*L > a*H

Whenever the optimal arc contains a critical point, we replace

47



the upper bounds in the preceding inequalities by «, When
it contains the minimum energy point alone, we replace the
lower bounds by the elliptic minimum a, given by 18

= %(rl +r, + 2) (42)

%min. 2
However, when it contains both points, while we still replace
the upper bounds in the preceding inequalities by «~, care

must be taken concerning the lower bound, since an hyperbolic
semimajor axis may be well smaller than the elliptic minimum.

Thus, in this case, we replace the lower bounds in Inequali-

ties (41) by a

min only when these bounds are greater

than a in” The foregoing analysis shows that, while the

semimajor axis of T,, is bounded when Ty, and T,, are both
elliptic, or both hyperbolic, or one of them is parabolic,
it is not necessary so when one of them is elliptic, and the

other is hyperbolic.

The Eccentricity Vector

Like the transfer velocity and orbital energy, there
exists in a 2-terminal trajectory family an overall minimum

for the numerical eccentricity, given by 18

r, - r
Smin. ! % 2 (43)

The point on the constraining hyperbola corresponding to this
least eccentric transfer trajectory is called the least

eccentricity point, and it can be shown that there is such a
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V-:r

point on each branch of a terminal constraining hyperbola,
located as shown in Figure C-1. Thus, to establish the upper
and lower bounds for the numerical eccentricity of the

minimal 2-impulse transfer trajectory, it is essential to
examine whether the optimal arc under consideration contains
this least eccentricity point or not. Similar to the inequali-
ties deduced for the terminal transfer velocity and the orbital

energy, we have in the absence of the least eccentricity point,

Expp if &y, < Sy )

By < Bwx < Bk if &1, ~ Exy
In case the arc contains this least eccentricity point, we
replace the lower bounds in the preceding inequalities by
fmin.

Furthermore, a study of the hodograph geometry shows that
not only the numerical eccentricity of T,, is so bounded, but
also the direction of its eccentricity vector which is in the
direction of the apsidal axis. Denoting the angle between
the eccentricity vector of a transfer trajectory and the

. P -
terminal position vector ri by ei’ we have

0. < 0, < 8 if 9. < B,

i*L i** i*H
(i = 1.2) (45)
0. < 6. < 8

i*H e if 9. > 8.

i*T,
Here the 68's are the true anomalies of the terminal point Qi

measured on the three trajectories, T and T,, (see

*T,7 T*H'

Fig. 8). So far as the bounding directions of the eccentricity
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vectors are concerned, no reference to the least eccentricity

point is necessary.

D. Time of Flight

It can be shown that the time of flight for the transfer
between two fixed terminal points is a single-valued increas-
ing function of the initial path angle. Thus, directly from
Inequality (20~1) we deduce that

Mtyp < Dyy < Btyy (46)

In addition to the few items presented above, the upper
and lower bounds of many other trajectory quantities may be
deduced in a similar way. However, no such exhaustive analysis
will be attempted here. As a final remark, the following
situation is worth mentioning:

When the two quantities, say X*l and X*2 pertaining to a
bounding trajectory pair, T*l and T*2' respectively, bound
the corresponding quantity X,, of the minimal 2-impulse

trajectory T,,, then the condition Xpq = Xug implies that

Xex = X*l = X

and

Tex = Tuq = Ty

a case in which the minimal 2-impulse solution and the two
minimal l-impulse solutions are identical. However, this is

upper or

not necessarily true when an absolute bound xabs’

lower, is present unless X,; = Xy, = X ..
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For example, it is quite possible that a pair of bounding
trajectories of the same eccentricity bounds a T,, of less
eccentricity if the optimal arc contains the least eccentric-
ity point. When this is the case, we observe that the two
quantities Xxq and X,,, being equal but distinct from Xobs’
form an upper bound if xabs is an absolute lower bound, and,
a lower bound if Xabs is an absolute upper bound, and that

they form no bound in the presence of both absolute upper

and lower bounds.
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VII. The Case of 180° Transfer

So far the analysis has been based on the assumption of
0 < ¢ < wv. In the limiting case of ¢ = m, although the
stationarity Egs. (6) and (13) no longer apply, the geometric
analyses in Sections III and IV are still valid, and all the
preceding qualitative and quantitative predictions still hold.

In fact, the situation is much simpler than in the
general case, as the velocity constraining hyperbola for each
terminal now degenerates into two straight lines both parallel
to the line of terminals Qle, its evolute disappears, leaving
the hodograph plane consisting of only the simple region, and the
transfer arc pair now becomes a pair of two straight line
segments., As consequences of such simpler hodograph geometry,
and in line with the preceding general conclusions, the two-
impulse 180° transfer presents some particular features as
follows:

1. There is one and only one optimal transfer arc pair,
hence, one and only one bounding trajectory pair, in each
sense of transfer (the distinction between short and long
transfers now ceases to exist).

2. No multi-minimum for the transfer in the same sense
is possible; and there exists at most a double minimum of
opposite senses (direct consequence of item 1).

3. The optimal condition for minimal two-impulse transfer,

Eg. (5), reduces to
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sin Yy = sin Yo (47)
for the 180° case. Here Yi (i =1,2) is the path angle of
the velocity-increment vector Aﬁi with reference to the local
radial direction; hence, Eq. (47) expresses the Law of Equal

Slope.

4. The coincidence condition reduces to simple
V. =V (48)

5. In contrast with the non-180° transfer, the two
position vectors, ;1 and ;2, now being collinear, do not
determine the orientation of the transfer plane. Hence
this orientation is open to choice.

Finally, it should be noted that, whereas no analytic
solution in closed form is possible for the minimal two-
impulse transfer in the general case, such a solution does
exist in the 180° case. For such a solution and the further
minimization of the total velocity impulse by optimizing the
orientation of the transfer plane, the reader may consult

Reference 27.
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VIII. Numerical Examples

To verify the preceding predictions two sets of numerical
examples have been worked out. The terminal conditions assumed
and the corresponding transfer geometry are shown in Table 1.
Set A consists of the transfers from a circular orbit to a
series of coplanar, coaxial, and similar elliptic orbits of
the same eccentricity 3/4 but varying size. The point of
departure on the circular orbit is, in each case, at 60° from
the point of arrival, which is the apocenter of the target
ellipse. Both the initial and final orbits are assumed to be
in the same sense of motion. Examples of set B are the same
as those of set A, except that the final orbits are a series
of similar hyperbolas of the same eccentricity 5/4, and that
the point of arrival is the pericenter of the target hyper-
bola in each case., In each set of examples, the absolute
minimal 2~impulse solution for T,,, and the two minimal 1-
impulse solutions defining the bounding trajectory pair, T*l

and T are calculated for fixed values of the distance ratio

x97

n, ranging from 0.20 to 2.0. The principal results are graphi-
cally depicted in the nondimensional form in Figs. 9 to 14,
Tabulated values are found in Appendix G, and some

numerical results of particular interest are summarized in
Table 1.

From these results, it is seen that each of the three

principal trajectory parameters, VC’ VR and h, calculated for
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TABLE l. NUMERICAL EXAMPLES OF THE MINIMAL TWO-IMPULSE ORBITAL TRANSFER

()

CIRCLE-TO-ELLIPSE

CIRCLE-TO-HYPERBOLA

(B)

TRANSFER GEOMETRY

TERMINAL CONDITIONS INITIAL FINAL INITIAL FINAL
Orbital Eccentricities g = 0 &, = 0.75 g = 0 52 = 1.25
Velocities Vo1 = 1 Voo = 0.5 Vo1 = 1 Vog = 1.5

901 = 0 | 992 =0 %01 =0 | 902 =0
Radial Distances Ty r, = nry ry r, = nry
Angle of Separation Yy = 60° Yy = 60°

Minimal Total Impulse,

f*y/QgL: lowest value =0.5 @n=1.0 =0.5 @n=1.0
1

DlstanSe Ratio for n = 0.630 n_ = 1.31
Tax = Tyy = Tuy c c

For detailed tabulated values, see Appendix G; for graphs, see Figs. 9 to 14
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T,.s« 1s indeed bounded between the corresponding gquantities
for the two bounding trajectories, T,, and Tyys as predicted
by the Inequalities (21, 22, and 34). (See Figs. 9 to 11).
Also, the minimal total velocity impulse required

for the transfer is bounded between its upper and lower
bounds as predicted by Inequality (29) (See Fig. 12).

To compare the total velocity impulses required for the
transfers along the three trajectories, T,;, Tyor and Ty,, the
values of f*l’ f*2, and f,, are found as shown in Fig. 13;
and the relative saving in the total velocity impulse by
2-impulse minimization over the minimization of each terminal

impulse is calcualted from

Af*l f*l - fas

= (49-1)
f*l f*l
Af £ - £
*2 - *2 * % (49_2)
f*2 f*2
and graphically shown in Fig. 14. From these plottings

it is seen that the f,, graph indeed remains below those of

£ and £ as predicted by Inequalities (31-1,2), and that

*] *2’
the savings Af,, and Af,, are positive throughout, justifying
the two-impulse minimization.

In addition to the foregoing preliminary observations,
the following are worth noting:

1. For each of the trajectory parameters, VC’ VR' and h,
calculated here, the three curves for the trajectories T,,,

T*1 and T intersect at a common point, indicating the

*07

57



coincidence of Taqpr Tag and T,,. The same situations are
found in the graphs of f,, and its upper and lower bounds as
shown in Figs. 12, where the three curves f.,, f*l and f*2
touch each other at their common point. The values of n

at the common points given by the various graphs of the same
set are, of course, the same. They are designated as nc,

as shown in Table 1. These values check with Eg. (18), as
they should, since they belong to the class of apside-to-
apside transfers.

2. For the inner transfer (n < 1) from a fixed initial
terminal point, under constant angle of separation, and
constant terminal velocities vectors, the total velocity impulse
required for the transfer along each of the three trajectories,
decreases as the final terminal distance r, increases; while
in the outer transfer (n > 1), each of these impulses tend to
increase with the final terminal distance within the present
range of computation (see Figs. 12 and 13).

3. The case n = 1 is singular in each set of examples,
since the initial circular orbit now passes through the final
terminal point. Figures 9 to 11, and 13 show that each T,,

- curve touches the T,; curve at n = 1, indicating T**=T*1+T*2.
It is to be noted that, in examples B, the case of n = 0.722
is also singular since the final hyperbolic orbit now passes
through the initial terminal point, and itself is T*2' This
is confirmed by the present computation as the value of f2*2
is indeed zero at this particular value of n. However, the

computation results indicate that the absolute minimal T,, is
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different from Tay in this case. It can be verified that
n=2.5 is another singular case in example A, though beyond the
present range of plotting, since the final elliptic orbit

now passes through the initial terminal point.
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IX. Summary of Conclusions

1. A minimal 2-impulse transfer trajectory T,ix is
bounded between a pair of bounding trajectories between the

same terminal points in the same sense of motion, one T with a

*]
minimal initial impulse, and the other (T*z), a minimal final
impulse.

It is not only bounded by the two bounding trajectories,
in the position space, but also in spaces of other trajectory
parameters, such as (a) the directions of departure and
arrival, (b) the terminal transfer velocities and their
components, VC’ VR and V@, {(c) the terminal velocity impulses,
(d) the angular momentum and semilatus rectum, (e) the orbital
energy and semimajor axis, (f) the eccentricity vector, (g) time
of flight, etc.

Under each item the trajectory quantities, Xuq and X,
pertaining to the bounding trajectory pair, T*l and T*2
respectively, form a pair of upper and lower bounds of the
corresponding quantity X,, pertaining to the trajectory T,.,
if no absolute upper and lower bounds are present. In case
there exists an absolute bound, upper or lower, then it
furnishes an additional choice for the proper bound X*1 and

Xs (For details, see Section VI.)

9°
2., A minimal 2-impulse transfer trajectory always

agree with its bounding trajectory pair in kind (short or

long transfer), sense (counterclockwise or clockwise), type

(elliptic, parabolic, or hyperbolic), and nature (realistic
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or unrealistic) if they agree themselves; but not necessarily
so with the two terminal orbits.

3. Under any terminal conditions, there exists at least
one pair of bounding trajectories of each kind and sense;
hence at least a local minimal 2-impulse solution, realistic
or unrealistic, of each kind and sense.

4. There exist at most three bounding trajectory pairs
of the same kind and sense, and at most a total of four
such pairs of both kinds and senses. Hence there can be no
more than a triple minimum of the same kind and sense of
transfer and no more than a quadruple minimum of both kinds
and senses.

5. Whenever the two trajectories of a bounding pair are
coincident, the minimal 2-impulse transfer trajectory bounded
between will coincide with them. A definite relation exists
among the four terminal vectors, ?l’ fé, Gbl' and ‘62, for
such coincidence (see Eg. (15)). When and only when this
coincidence condition is met, the 2-impulse minimization
and the l-impulse minimizations at the initial and final
terminals separately will yield the same transfer trajectory.

All the foregoing conclusions are valid for any arbitrary
central angle 0 < ¥ < 7. For the particular conclusions

pertaining to the case of ¥ = 7, see Section VII.
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X. Final Remarks

As shown in the preceding Sections, a great deal of
information concerning the minimal 2-impulse transfer may be
obtained once the two bounding trajectories are determined.
In many cases, definite qualitative conclusions may be
asserted directly from the bounding trajectory pair; and
quantitatively, the upper and lower bounds of the principal
parameters pertaining to the minimal 2-impulse transfer may
be established, Since each bounding trajectory is governed
by a quartic equation, while the minimal 2-impulse transfer
trajectory is governed by an octic equation, the present
treatment amounts to solving two fourth degree equations
instead of one eighth degree equation. In view of the fact
that a quartic equation is much more tractable than an octic,
and that an analytic solution in closed form exists for the
former, such a treatment is advisable. The present geometric
approach in the hodograph plane by examining the optimal
transfer arc pairs, rather than an algebraic approach to the
solutions of the pertinent equations, has the further advan-
tage of eliminating the extraneous roots of the governing
octic, which do not belong to the stationarity solution, as
well as the roots for the maximal total impulse solutions,
so that the problem narrows down to locating all the local
minimal solutions and choosing an absolute minimal and

realistic one. As each bounding trajectory has the particular
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significance of having a stationarity impulse at one terminal,
the existing knowledge on the comparatively simpler problem
of determining the optimal l-impulse transfer trajectory8' 20
may be utilized to aid the solution of the 2-impulse problem.
Thus, in summary, the advantage of using the bounding trajec-
tories for treating the 2-impulse transfer problem are as
follows:
1. Solution of two quartic equations instead of a
single but cumbersome octic equation.
2. Utilization of the existing knowledge on the
optimal l-impulse transfer problem to aid the
solution of the optimal 2-impulse transfer
problem,
3. The choice of a proper bounding trajectory
pair eliminates the extraneous solutions as

well as the maximal total impulse solutions.

At first sight it seems that the choice of a bounding
trajectory pair is generally not unique, since each station-
ary quartic may yield as many as four distinct stationary
l-impulse trajectories. However, the present study shows
that the number of such trajectory pairs cannot exceed three
in one kind of transfer, and the total number of such pairs,
counting both kinds, cannot exceed four (see Section V-D).
Thus the number of possible bounding trajectory pairs is

highly limited. In fact, the presence of three bounding
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trajectory pairs of the same kind can happen only under the
condition that both terminal velocities enter the nonsimple
regions in the hodograph plane. This condition requires

that each terminal velocity be of sufficient magnitude,

VOpi > Si (see Fig. C-1 and Eq. C-8, Appendix C), and that in
a direction with limited deviation from the minimal energy
direction, (¢, | < i% , see Fig. C~1). Such a reguirement puts
rather stringent conditions on the terminal orbits. For
example, in a coplanar 60°~transfer at n = 2, it requires an
initial terminal velocity VOl > 1.52 VI and a final terminal
02 4.13 V;. Such conditions can be met only
between two hyperbolic orbits of the eccentricities €1 > 3.62

velocity of V

and €y > 3.34, a combination not 1likely to be encountered in
practical problems. Thus in the usual cases, such as the
transfer between two moderately eccentric Keplerian orbits,
the two terminal velocity vectors will remain in the simple
regions, and consequently, there is a unique bounding trajec-
tory pair in each kind. Even under some unusual terminal
conditions, when one or both of the terminal velocities do
enter the nonsimple regions, and there are more than two

bounding trajectory pairs, the first choice will usually be

the pair of two absolute minimal l-impulse transfer trajectories

if such a pair exists. Thus the proper choice of a bounding
trajectory pair, ordinarily does not present a problem.

In addition to yielding essential information on the
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minimal 2-impulse transfer, the use of bounding trajectories
may also aid theoretical studies of such transfers. The
derivation of the coincidence condition, geometric as well
as analytic, for the identical 2-impulse minimization and
the two l-impulse minimizations at the initial and final
terminals separately furnishes an example (see Section V-E).
Many other aspects of 2-terminal transfers may be investi-
gated in the light of the bounding trajectories; however,
such investigations are not intended in this report.

So far the present treatment has been kept perfectly
general without any restrictions on the terminal conditions
except that the two terminal orbits are assumed Keplerian.

Thus the predictions made are applicable to all particular
cases. In the case of 180° transfer, such predictions may

not be necessary, since an analytic solution exist527, and

the computation is direct and simple. However, the application
of the bounding trajectory pair may still help to bring out
easily many salient features of such a transfer, as illustrated
in Section VII, No attempt is made here to cover other
particular cases. However, the application of the present
treatment to various cases under specialized terminal conditions
should be straight forward.

Finally, it should be mentioned that, when the number
of impulses are open to choice, three or more impulses may
prove to be more economical than two impulses under the same
initial and final terminal conditions in certain cases.7’22'24'26

Nevertheless, the two-impulse optimum will continue to be a

practical mode of optimal transfer in most cases even though
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optimal solutions with additional impulse or impulses do
exist as the penalties on the implementational complexity and
the duration of transfer may well offset the additional
saving in fuel economy. A full discussion of the general
multi-impulse transfer problem, however, is beyond the

scope of the present report.
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APPENDIX A
Derivation of the Stationarity Octic Equations in Symmetric
Velocity Coordinates
In terms of the symmetric coordinates (VC, VR), the

terminal velocity impulse required for the transfer is given

by
£2 = v +v2-o2n .,V -2M .V, + P (i=1,2)  (a-1)
c R oi'c oi R oi !
where Moi’ Noi' and Poi are defined by Equations (7 to 10).

Carrying out the differentiation of Equation (A-1l) as
indicated in Equation (5), and noting from Equation (4) the

differential relation

ch dVR
—< 4+ B - (A-2)
VC VR

we obtain, after simplification, the stationarity equation

in the symmetric form

4 3 2

a4Vc** + a3Vc** + aZVC** + alVC** + a, + a—lvR**
2 3 4 —
ta_ oVpsx ¥ 2_3Voes 2, Vpas = 0 (A-3)
where

= N2 - N2 -

3y = Ngyp =~ Ngo 7 Pop + Py
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K (Mol M02 + Nol Noz) + 2K (Pol Poz)
2K(N oM oPo1 — NoiMo1Fo2)
_ 2 _ _
= 4K (Moz Mol) + 4KMolMoz(Nol Noz)
+ 2K(N_.P . - N.,P_. + N M. - N M%)
ol 02 02 ol ol 02 02 ol
= 2K(M N 5 = MgN 3 + 4M N5 = 4M N )
2 2
T Mo1Po2 T MooPor
= AR(N  -N o) + 2M M (M, = M)
+2(M P T Mg Poo)
22 _
= Mo M2 Po1 ¥ Po2 (a~4)
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Eliminaﬁing VC and then VR alternately from Equations (A-3)

and (4) results in the octics in V_ and VR respectively:

C
8
Z CnV'Z** =0 (6-c)
n=o
8
Z anz** =0 (6-R)
n=o
where
Ch = @n_yg R, = a,_, n =4 to 8
(A-5)
- 4-n = xdn =
c, =K a4’ Rn = K @4-n n=o0 to 4

a, = a_m (A-6)
_ ,4-n T _ 5T -

Cp = K Cg-n = Bp (A=7)
_ 4-n _T _ AT -

R, =K Rg_n = Cp (A-8)

where the transpose (T) indicates the interchange of Moi

and Noi'
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APPENDIX B

TABLE B: PRINCIPAL TRAJECTORY PARAMETERS OF
TWO-IMPULSE TRANSFER IN SYMMETRIC
VELOCITY COORDINATES
Basic Formulas
Transfer Velocity
Magnitude v, = JVZ + v2 - 2K cos ¥, (B-1)
ki [o; R 1
(r,8) components Vei = Vg = V, cos ¢, (B-2)
Vei = Vc sin Vi (B-3)
Path Angle b, = tan T ZB. csc ¢. - cot ¢, (B-4)
i vc i i
Velocity-Increment
(Terminal Impulse)
. _ 2 2 _ _ 2 _
Magnitude fi = ch + VR 2NQiVc 2MoivR + Voi 2K cos ¢i (B-5)
Direction Cosines cosY,, = (VR - Vc cos lfi - Vori)/fi (B-6)
cosy. =‘(Vc sin 4>i - Voei}/fi (B-7)
COSYNi = —VONi fi (B_8)
. 2 2 .2 2
Total Velocity- £=> /JVvi+ Vg = 2N_;V_ - 2M_ .V + VJ. - 2K cos ¢, (B-9)
Impulse i c oi'¢ oi oi i
Angular Momentum h =V _r, sin ?i (B-10)
orbital Energy ko= 5(V2 + v2) - K cos #, - 2 (B-11)

i
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APPENDIX B
TABLE B. {(Cont'd)
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— 2 2 _ -
v, = JvCl + vEs 2tan .%cot ¢ (B~1"')
= - -9
voi T Vmi Vo COs (B-2")
Voi T Vei SR F (B-3")
-1 (R
¢; = tan o— csc g, - cot Z. (B~4"')
£, _ 2 2 - 2 .
i = s/\’c + ovp 2noi\’c 2moivR +ovoi 2tan %cot ¢ (B=5"')
4r
i £,
cos y.; = (\’R - v, cos "i - Vori) / e~ (B-6")
Jll/ri
£,
. i
COS gy ("c sin f; - "oej) / (B=7")
u/ri
/&
cosY,,., = = . (B-8")
Ni ONi *er
£ _ [2 ~ 2 7 m i
/_—— \/\’cl + VR1 znol\)cl 2mol VR1 + Vo1 2 tan 5 cot 5’1 :
u/rl !
v 2 2 ¥ , i
+ \/tvc2 + VR2 2n02 Vo 2m02 YR2 + Voo ~ 2 tan 5 cot 5"2) /n  (B-9'")
i+ T v Sin (B=10")
ci L &1
joxr,
i
k
i 2 2 - ] _
e =% (\)ci + \)Ri) tan 3 cot y 1 (B-11")
i







APPENDIX C

GEOMETRY OF THE TERMINAL VELOCITY CONSTRAINING HYPERBOLA
AND THE PERTINENT FORMULAS

TABLE C-1
The Principal Geometric Elements of the Constraining Hyperbola
(i=1,2)

The Constraining Hyperbola

Eq. in Rectangular V2i V2i
Coordinates —%—-— -%—-= 1 (C-1)
A B
i i
¢.
Semitransversal Axis A; ==j%ﬂ-tan % tan fi (C-2)
i
Semiconjugate Axis Bi = |7 tan 5 cot 7 (C-3)
i
Center-to-Focus c. = |[% tan &
Distance 1 d 2 (C-4)
.. Yy
Eccentricity e; = csc 5= (C-5)
Included Angle Between o; =T ¢ (C-6)

the Asymptotes

]
The Evolute - Lame

2 2 hd
Eg. in Rectangular (a.v_.) T (B.V_.) L. c? (C-7)
Coordinates 1e1 1ox1
- .
Center-to-Vertex S, = 2 tan 51 tan fi / sin2 Ei
Distance 1 L (C-8)
Included Angle Between o, = ¢ (C-9)

the Asymptotes
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Notes:

1. The constraining hyperbola is asymptotic to the
terminal radial direction and the chordal direction, while
its involute, a form of Lame', is asymptotic to the terminal
transversal direction and the direction perpendicular to
the chord. The two sets of asymptotic directions are thus
orthogonal to each other.

2. The constraining hyperbola and its involute have the
interior and exterial bisectors of the base angle at the
terminal as their common transversal and common conjugate axes

respectively.

(A typical terminal constraining hyperbola is shown in Fig. C-1l.
For the particular points of interest on the constraining hyperbola,
See Table C-2. For the relative orientation of the two terminal

constraining hyperbolas, see Fig. 4.)
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TR

EVOLUTE (lame)
d
Vo

® BRANCH
SHORT TRANSFER

G+ Va.
v, /
®

yd -
1%
oF ay /-
R
® 5
£ et
> /2 | p/2
A * CRITICAL
ez v CIRCLE
y , v
CONSTAINING ==V
HYPERBOLA
A
S
H
OBRANCH \

LONG TRANSFER

E: ELLIPTIC TRANSFER

EVOLUTE (lame) H: HYPERBOLIC TRANSFER
M': HYPERBOLIC TRANSFER, UNREALISTIC
Q*: PARABOLIC TRANSFER
Q" PARABOLIC TRANSFER, UNREALISTIC

FIG.C-1 7THE TERMINAL VELOCITY CONSTRAINING HYPERBOLA AND ITS EVOLUTE
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TABLE C-2: PARTICULAR POINTS ON THE TERMINAL CONSTRAINING
HYPERBOLA AND THEIR ASSOCIATED TRAJECTORIES

88

Points on the Constraining Hyperbola Pertinent Formulas (i = 1.2)
Transfer Trajectory
Designation Location
ST LT
Minimum Energy E+ E_ Vertex of each (vi)min = A, (C-10)
branch :
= - 2u -
kmin. - rl + r2 + (c-11)
= % -
qmin. a(fy) ¥yt 2 (c-12)
. Least Eccentricity i A F See Fig. C-1 'rl - r2|
min. = —_— (C-13)
Critical (Parabolic)
. . * * . * 21
Realistic Q+ Q_ Intersections of Vi = r (C-14)
the critical i
1* 1% circle with the
Unrealistic QL Q- constraining * / ¥1 ¥
i hyperbola tan §1 = cot 'z tan 3 (C-15-1)
;
: * '4
| tan &, = /:an % cot —-23 (C-15-2)




APPENDIX D

TABLE D: TERMINAL CONDITIONS AND THE DISTRIBUTION OF
ORTHOPOINTS AND THEIR ASSOCIATED STATIONARY
ONE-IMPULSE TRANSFER TRAJECTORIESt

Location of Terminal Location of Orthopoints and Types
Velocity Point of the Associated Transfer
Trajectories
Qi Q. Q. Q. Q.
i*a i*bp i* e i*g
EE - S + E + -—— -— E +
EE - N # E + E + E + E ¥
HE - S #* H + _—— — E +
HE = N & H + H'+ (E+) H'+ (Ex) E ¥
HH - S + H + -— _— H +
Boundary between EE
& HE: S # Q*+ ———— _— E T
N £ Q*+ E + E + E +
Boundary between HE
& HH: S & H + -—— -— Q*¥
H'E - s# H'+ ——— ——— E ¥
H'E - N& H'# H + (B%) H +(E¥) E ¥
HIHI - S:l: Hl+ ———— — Hl;
Notations: ' unrealistic transfer, + short transfer, - long

transfer; for others, see nomenclature.

¥ Symbols in parenthesis are for the hatched portion of the
HE-N* or H'E-N* regions only, see Figs. 5 and D-1l.

89



06

14
N
)
EVOLUTE {iame) EVOLUTE (lamé)
Qxq
a Qe
*b
>V >
X 0 > VX
CONSTRAINING CONSTRAINING
HYPERBOLA @ HYPERBOLA
Q
ed Quq
Q, N SIMPLE REGION Q, N NONSIMPLE REGION

-}

FIG. D-1 TYPICAL DISTRIBUTIONS OF THE ORTHOPOINTS
ON THE CONSTRAINING HYPERBOLA
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APPENDIX E
Proof of the Existence of a Two-Impulse Extremummon the Optimal
Transfer Arc Pair
. . . . t

Assume fl and f2 are continuous and twice differentiable.
Consider a typical transfer arc pair of type (A). With
reference to Fig., E-1, the end points of the arc pair Q*l
and Q*2 define a closed interval [p, gl]. Since Ql* and Qz*

are the minimal points on this arc pair, we have:

At p: f' =0
l L] L T
. £f = f1 + f2 < 0
f2 < 0
' .
At g: £. > 0
l [ L [}
' £f = fl + f2 >0
f2 = 0

Thus f' has opposite signs at the endpoints, hence there is

at least a local extremal f on the interval. Furthermore,

the absence of any stationary point and inflection point on fl and
f2 in the interior of the interval shows that fi and f; are
monotonically increasing on the interval, and so is f'. Thus

' . 3 .
the £ curve crosses the V., - axis only once, and f" is positive

C
throughout the interval. Consequently we conclude that,
There is one and only one interior extremal £

on the interval [p, gl, along the transfer arc pair

(A), and this extremum is a local minimum.

+ This condition is actually met in any interval excluding the
origin, and where none of fl and f2 vanishes.
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Next, consider a typical transfer arc pair of type (B).
With reference to Fig. E-1B, we have, on the closed interval

ip, q] defined by the endpoints Qxa and Q741 of the arc

pair:
1 w—
At p: fl =0 | . . .
. - £ = fl + f2 < 0
f2 < 0
! N
At g: fl =0 . - .
. J, £ = fl + f2 < 0
f2 <0

Thus fI has the same sign at the endpoints, hence there is
either an even number of internal extrema of f or none.
Since, as assumed here, fl goes from one minimum to one
maximum on the interval, there exist one and only one point
of inflection on fl, that is, there is one and only one
interior extremal fi on the interval. On the other hand,
in the absence of any stationary point and inflection point
other than the endpoint, f; is monotonically increasing, and
is negative throughout the interval. Consequently, f' first
increases and then decreases, with one and only one interior
extremum on the interval. Hence there are three possibilities:
1) f' cuts the Vc - axis at two points. There

exists a pair of extremal values of f, one

maximal and one minimal,
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2) £ touches the axis. Then at the point of
tangency, fl = 0 and f“ = 0, £ is neither
a maximum nor a minimum..
3) fl cuts the axis at no point. There exists
no extremal f.
Consequently, we conclgde that,
There is either one interior minimal f and one

interior maximal £, or none on the interval

[a, bl, along the transfer arc pair (B).

The proof for the existence of a local maximum on the arc

pair of type (D) is analogous to the proof for type (3).
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OPTIMAL ARC PAIR
TYPE A

Qu

—  Qq

OPTIMAL ARC PAIR

TYPE B
Qe
F  Que
e O

FiG. E-I

VARIATION OF THE IMPULSE FUNCTION AND ITS DERIVATIVE ALONG

AN OPTIMAL TRANSFER ARC PAIR
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APPENDIX F

TABLE F: TERMINAL CONDITIONS AND THE MULTIPLICITY OF MINIMAL 2-IMPULSE SOLUTIONS

Regional Locations

Case of Terminal Optimal Transfer Arc Pairs Maximum Multiplicity
Velocity Points

0 Q In One Kind In Other Kind In One Kind In Other Kind Bgth .

0l 02 and Sense and Sense and Sense and Sense Kinds
1 St S+ (a,a) (da,d) 1 1 2
2 S+ S+ (a,d) (4,a) 1 1 2
3 S# N + (a,a), (a,c) (d,d) 2 1 3
4 S+ NZF (a,d) (d,a), (4,c) 1 2 3
5 Nt N i (a,a), (a,c), (c,e) | (4,d) 3 1 4
6 N N+ (a,d), (c,q) (d,a), (4,¢) 2 2 4
Note: For the double sign, all upper signs go together in each case, and so are all the lower signs.







APPENDIX G
NUMERICAL RESULTS

TABLE G-1A. TRAJECTORY PARAMETERS FOR MINIMAL IMPULSE TRANSFERS: CIRCLE-TO~ELLIPSE

L6

(vol = 1.0, Yoy = 0.5, v» = 60°)
Transfer Velocities Angular Momenta
Distance
Ratio Chordal Components Radial Components
{n= r2/rl
| Varr | Verz | Verx | Vesp | Vpeg | Vpes Ray By B

0.2 1.7971 2.0854 1.8518 1.6999 1.4649 1.6497 .3396 .3941 .3499
0.3 1.4845 1.6931 1.5303 1.3304 1.1665 1.2906 .4339 .4949 .4473
0.4 1,3184 1.4615 1.3531 1.1020 .9941 1.0737 .5239 .5807 .5376
0.5 ‘1.2251 1.3058 1.2460 .9425 .8842 .9266 .6125 .6529 .6230
0.6 1.1747 1.1933 1.1797 .8245 .8117 .8210 .7002 L7112 .7031
0.7 1.1514 1.1084 1.1401 .7351 .7636 .7424 .7853 .7560 .7776
0.8 1.1447 1.0427 l1.1210 .6671 .7324 .6812 .8653 .7882 .8474
0.9 1.1476 .9912 1.1224 .6157 .7128 .6295 .9375 .8098 9171
1.0 1.1547 .9505 1.1547 .5773 .7013 .5773 .9999 .8231 .9999
1.1 1.1632 .9183 1.1061 .5489 .6953 .5772 1.0517 | .8303 1.0001
1.2 1.1713 .8927 1.0516 .5281 .6929 .5882 1.0931 .8332 .9814
1.3 1.1783 .8724 1.0009 .5130 .6929 .6040 1.1252 .8331 .9558
1.4 1.1839 .8563 .9581 .5023 .6945 .6207 1.1492 .8312 .9300
1.5 1.1880 .8434 .9233 .4948 .6970 .6367 1.1666 .8282 .9067
1.6 1.1911 .8330 .8955 .4897 .7002 .6514 1.1788 .8245 .8863
1.7 1.1931 .8247 .8732 .4863 .7036 .6645 1.1869 .8205 .8687
1.8 1.1943 .8180 .8554 .4843 .7072 .6762 1.1919 .8163 .8537
1.9 1.1950 .8126 .8411 .4833 .7108 .6867 1.1944 .8122 .8407
2,0 1.1952 .8082 .8294 .4830 .7143 .6960 1.1952 .8082 .8294
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TABLE G-1B.

=1.0, v

(Vo1 02

= 1.5,

TRAJECTORY PARAMETERS FOR MINIMAL IMPULSE TRANSFERS: CIRCLE TO HYPERBOLA

Transfer Velocities Angular Momenta

Distance :
Ratio Chordal Components Radial Components

n = r2/rl

Ver1 Vexa Voxn VR#1 Vr#2 VRex By o B

0.2 1.7971 3.4056 2.0122 1.6999 .8970 1.5182 .3396 .6436 .3802
0.3 1.4845 2.8388 1.7123 1.3304. .6957 1.1534 .4339 .8298 .5005
0.3999 1.3184 2.4924 1.5651 1.1020 .5829 .9283 .5239 .9903 .6219
0.4999 1.2251 2,2399 1.4966 .9425 .5155 .7715 .6125 1.1199 .7483
0.5999 1.1747 2.0350 1.4819 .8245 .4759 .6536 .7002 1.2129 .8833
0.6999 1.1514 1.8584 1.5148 .7351 .4554 .5587 .7853 1.2675 1.0332
0.7999 1.1447 1,7028 1.3519 .6671 . 4485 .5649 .8653 1.2872 1.0219
0.8999 1.1475 1.5655 1.2192 .6157 .4513 .5795 .9375 1.2791 .9961
0.9999 1.1547 1.4460 1.1551 .5773 .4610 L5771 .9999 1.2522 1.0003
1.0999 1.1632 1.3436 1.1869 .5489 .4752 .5379 1.0517 1.2149 1.0732
1.1999 1.1713 1.2574 1.1899 .5281 .4919 .5199 1.0931 1.1735 1.1104
1.2999 1.1783 1.1856 1.1804 .5130 .5099 .5121 | 1.1252 1.1322 1.1272
1.3999 1.1839 1.1264 1.1651 .5023 .5279 .5104 1.1492 1.0935 1.1309
1.4999 1.1880 1.0778 1.1473 .49438 .5454 .5124 1.1666 1.0584 1.1267
1.5999 1.1911 1.0379 1.1290 .4897 .5620 .5166 1.1788 1.0272 1.1174

J 1.6999 1.1931 1.0050 1.1109 .4863 .5774 .5223 1.1869 .9998 | 1.1052

I 1.7999 1.1943 .9778 1.0937 .4843 .5916 .5289 1.1919 .9758 ! 1.0915
1.8999 1.1950 .9552 1.0777 .4833 .6046 5359 | 1.1944 .9548 : 1,0772
1.9999 1.1952 .9366 1.0631 .4830 .6164 .5430 1.1952 .9366 f 1.0631
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TABLE G-2A.

TERMINAL IMPULSES REQUIRED FOR MINIMAL IMPULSE TRANSFERS:

CIRCLE-TO~ELLIPSE

(vOl = 1.0, Voo = 0.5, v = 60°)
Distance T T T Relative Savin
Ratio *1 *2 *x g
Initial Final Total | Initial Final Total | Initial Final Total

£y = f*z = fanx = f*l'f** f*z'f**

fl'kl + f1*2 + 1** + f*l f*2

n=ry/rif f1a fax1 | fan1 £1xp faxa | fax2 Eyun Eyun | Eoux

.2000 .6635 2.3606 | 3.0241 .8407 2.3105 | 3.1513 .6715 2;3426 0142 .0032 .0435
.3000 .5730 1.7479 | 2.3209 .6782 1.7140 | 2,3922 .5790 1.7342 1 2,3133 .0033 .0330
.3999 .4881 1.3565 1 1.8447 .5442 1.3368 [ 1.8810 .4918 1.3479 ] 1.8398 .0026 .0219
.4999 .4051 1.0760 ] 1.4811 .4257 1.0684 | 1.4942 .4066 1.0720 { 1.4791 .0013 .0100
.5999 .3224 .8647 11.1871 .3237 .8642 11.1880 .3225 .8645 ] 1.1870 L0001 .0008
.6999 .2398 .7081 .9479 .2484 .7051 .9535 .2403 .7067 9471 .0008 .0066
.7999 .1577 .5989 . 7567 .2175 .5785 .7960 .1613 .5908 7522 .0059 .0551
.8999 .0774 .5320 .6094 .2369 .4768 .7137 .0847 .5169 .6017 L0126 .1569
.9999 .0000 .4999 .4999 .2870 .3944 .6814 .0000 .4999 .4999 .5444 .3343
1.0999 .0734 .4926 .5661 .3473 .3271 .6745 .1048 L4356 .5405 .0452 .1986
1.1999 .142) .4999 .642) .4078 .2719 .6798 .2113 .3686 .5800 .0967 .1468
1.2999 .2057 5142 .7199 .4649 .2261 .6910 .3099 .3061 6161 L1442 .1084
1.3999 .2641 .5307 .7949 .5171 .1879 .7050 .3968 .2516 6484 .1842 .0803
1.4999 .3175 .5469 .8645 .5644 .1557 .7202 L4715 .2055 6771 .2167 .0598
1.5999 .3662 .5618 .9280 6071 .1284 .7355 .5356 .1670 7027 .2428 .0446
1.6999 .4105 .5749 .9854 .6455 .1051 .7506 .5908 .1347 .7255 .2636 .0333
1.7999 .4508 .5861 | 1.0369 .6801 .0850 .7651 ,6385 .1076 7461 .2803 .0248
1.8999 .AB75 .5956 1 1.0831 L7113 .0676 .7790 .6801 .0847 7648 .2938 .0182
1.9999 .5202 .6034 ] 1.1237 .7390 .0531 .7921 .7166 .0650 7815 .3045 .0133
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TABLE G2B.

TERMINAL IMPULSES

REQUIRED FOR MINIMAL IMPULSE TRANSFERS:

CIRCLE-TO-HYPERBOLA

(v01 = 1.0, Vo = 1.5, = 60°)
Distance Tyq Tyy Ty Relative Saving
Ratio
Initial Final Total | Initial Final Total| Initial Final Total
f*l = f*z = Fon = f*l_f** f*z_f**
f1ug * F1ep * TR BT Y

n=r,/ry | f14; £ox1 2*1 £1%2 foxa | faxp Eun £oun 2% %
.2000 .6635 2.8245 ] 3.,4881 1| 2.4730 2.0164 | 4,4894] 0.7704 2.6170} 3.3875 .0288 .2454
.3000 .5730 2.1071 | 2.6801( 2.0263 1.3348 | 3.3611¢ 0.6956 1.8742 | 2.5699 .0411 .2354
.3999 .4881 1.6426 | 2.1308 | 1.7042 .8750 | 2.5793| 0.6331 1.3764 ] 2.0096 .0568 .2208
.4999 .4051 1.3010 [ 1.7061 | 1.4294 .5300 ] 1.9594| 0.5818 0.9932 ] 1.5751 .0768 1961
.5999 .3224 1.0333 ] 1.3558( 1.1774 .2570 | 1.4345[ 0.5489 0.6704 ) 1,2193 .1007 .1500
.6999 .2398 .8226 | 1.0624 .9424 .0413 .9838] 0.5500 0.3845 .9345 .1203 .0500
.7999 .1577 .6633 .8210 .7254 .1283 .8538 0.3208 { 0.4179 .7387 .1002 L1347
.8999 .0774 .5559 .6333 .5306 .2600 .7906 | 0.1234 0.4791 .6026 .0485 .2378
.9999 .0000 .5000 .5000 .3637 .3605 .7242 | 0.0003 0.4996 .4999 .0000 .3097
1.0999 .0734 .4874 .5608 .2365 .4361 .6726 | 0.0795 0.4750 .5545 .0113 . 1755
1.1999 L1421 .5033 .6455 .1781 .4921 .6703] 0.1440 0.4990 6431 .0037 .0405
1.2999 .2057 .5334 .7392 .2059 5333 .7393% 0.2057 0.5334 .7392 .0000 .0001
1.3999 2641 .5680 8322 .2738 5633 .8371] 0.2652 0.5654 .8307 .0018 0077
1.4999 .3175 .6019 .9195 .3467 .5848 .93151] 0.3215 0.5918 .9134 .0066 .0194
1.5999 .3662 .6329 .9992 .4146 .5999 | 1.0146 | 0.3742 0.6122 .9865 0127 0277
1.6999 .4105 .6602 | 1.0707 .4755 .6104 | 1.0859] 0.4230 0.6273 ] 1.0504 .0190 .0327
1.7999 .4508 .6837 | 1.1345 .5295 .6172 11,1468 0.4679 0.6381 ] 1.1060 .0251 ,0355
1.8999 .4875 .7037 1 1.1912 .5774 .6214 [ 1.1988] 0.5091 0.6454 | 1.1545 .0308 .0369
1.9999 .5202 .7197 ] 1.2399 .6190 .6228 ] 1,2419 ) 0.5459 0.6493 ] 1.1952 .0360 .0375




